Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.872
Filtrar
1.
J Colloid Interface Sci ; 665: 1054-1064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579388

RESUMO

The rational design of morphology and heterogeneous interfaces for non-precious metal electrocatalysts is crucial in electrochemical water decomposition. In this paper, a bifunctional electrocatalyst (Ni/NiFe LDH), which coupling nickel with nickel-iron layer double hydroxide (NiFe LDH), is synthesized on carbon cloth. At current density of 10 mA cm-2, the Ni/NiFe LDH exhibits a low hydrogen evolution reaction (HER) overpotential of only 36 mV due to the accelerated electrolyte penetration, which is caused by superhydrophilic interface. Moreover, an alkaline electrolyzer is formed and provide a current density of 10 mA cm-2 with a voltage of only 1.49 V. It is confirmed by the density functional theory (DFT) that electron from the Ni layer is transferred to NiFe LDH layer, redistributing the local electron density around the heterogeneous phase interface. Thus, the Gibbs free energy for hydrogen adsorption is optimized. This work provides a promising strategy for the rational regulation of electrons at heterogeneous interfaces and the synthesis of flexible electrocatalysts.

2.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607043

RESUMO

Mycoplasmopsis bovis is a causative agent of crucial diseases in both dairy and beef cattle leading to substantial economic losses. However, limited control measures for M. bovis-related diseases exist due to a lack of understanding about the virulence factors of this pathogen, a common challenge in mycoplasma research. Consequently, this study aimed to characterize a novel nucleomodulin as a virulence-related factor of M. bovis. Employing bioinformatic tools, we initially predicted MbovP467 to be a secreted protein with a nuclear localization signal based on SignalP scores and the cNLS (Nuclear Localization Signal) Mapper, respectively. Subsequently, the MbovP467 gene was synthesized and cloned into a pEGFP plasmid with EGFP labeling to obtain a recombinant plasmid (rpEGFP-MbovP467) and then was also cloned in pET-30a with a consideration for an Escherichia coli codon bias and expressed and purified for the production of polyclonal antibodies against the recombinant MbovP467 protein. Confocal microscopy and a Western blotting assay confirmed the nuclear location of MbovP467 in bovine macrophages (BoMacs). RNA-seq data revealed 220 up-regulated and 20 down-regulated genes in the rpEGFP-MbovP467-treated BoMac group compared to the control group (pEGFP). A GO- and KEGG-enrichment analysis identified associations with inflammatory responses, G protein-coupled receptor signaling pathways, nuclear receptor activity, sequence-specific DNA binding, the regulation of cell proliferation, IL-8, apoptotic processes, cell growth and death, the TNF signaling pathway, the NF-κB signaling pathway, pathways in cancer, and protein families of signaling and cellular processes among the differentially expressed up-regulated mRNAs. Further experiments, investigating cell viability and the inflammatory response, demonstrated that MbovP467 reduces BoMac cell viability and induces the mRNA expression of IL-1ß, IL-6, IL-8, TNF-α, and apoptosis in BoMac cells. Further, MbovP467 increased the promoter activity of TNF-α. In conclusion, this study identified a new nucleomodulin, MbovP467, for M. bovis, which might have an important role in M. bovis pathogenesis.


Assuntos
Interleucina-8 , Fator de Necrose Tumoral alfa , Animais , Bovinos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Sinais de Localização Nuclear/metabolismo , Regulação da Expressão Gênica , NF-kappa B/metabolismo
3.
J Med Chem ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574366

RESUMO

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.

4.
Opt Express ; 32(7): 11509-11521, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570996

RESUMO

Stable Q-switched and femtosecond mode-locked erbium-doped fiber laser (EDFL) have been achieved using CuSe nanosheets as novel saturable absorber (SA), where the CuSe nanosheets were prepared by a hydrothermal method. The nonlinear optical properties of CuSe nanosheets were measured using an Z-scan setup, revealing nonlinear absorption coefficients of -3.67 ± 0.22 cm GW-1 at 1560 nm. The prepared CuSe nanosheets were mixed with polyvinyl alcohol (PVA) to obtain a CuSe-PVA SA with a modulation depth of 3.8 ± 0.13%, and it was utilized to realize a Q-switched EDFL, obtaining the narrowest pulse duration of 1.29 µs and the maximum output power of 5.96 mW, which corresponds to a pulse energy of up to 103.7 nJ. In addition, CuSe nanosheets were deposited on a D-shaped fiber (DSF) to fabricate a CuSe-DSF SA with a modulation depth of 5.6 ± 0.17%, and it was utilized to realize a mode-locked EDFL. The mode-locked EDFL demonstrated a low threshold of only 42 mW, a pulse duration of 740 fs, and a maximum output power of 9.7 mW. Meanwhile, it exhibited a high signal-to-noise ratio of 72 dB. To the best of our knowledge, this is the first time of CuSe nanosheets as SA in EDFL. The results demonstrate that CuSe nanosheets are a highly promising nonlinear optical material with great potential for applications in ultrafast photonics.

5.
Opt Express ; 32(7): 12428-12437, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571065

RESUMO

The challenges presented by the directly reflected field in optical feedback cavity-enhanced spectroscopy systems serve as substantial obstacles, introducing additional complexity to existing systems and compromising their sensitivity, as the underlying mechanisms of its adverse effects remain not fully understood. This study aims to address this issue by introducing a comprehensive analytical model. Additionally, frequency locking can be achieved by decreasing the feedback rate, the laser's linewidth enhancement factor, and the directly reflected field, and by increasing the refractive index of the gain medium, the length of the laser's resonant cavity, the electric field reflectivity of the laser's output facet, and the resonant field. These parameters can affect the feedback coupling rate pre-factor, and for a resonant cavity with a length of 0.394 m, optical feedback can only be established when the feedback coupling rate pre-factor is less than 1.05 × 109. Through experimental validation, we successfully confirm the effectiveness of the proposed solution in eliminating the detrimental effects of the directly reflected field. Importantly, this suppression is achieved without compromising other aspects of the system's performance. The research findings not only offer the potential to optimize various cavity-enhanced spectroscopy systems that rely on optical feedback but also show promising applications in advancing the development of high-purity spectrum diode lasers utilizing optical feedback from an external high-finesse cavity.

6.
Appl Opt ; 63(9): 2286-2293, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38568584

RESUMO

A two-dimensional binary phase grating is proposed in this paper. Unlike a conventional transmission grating, in theory, the proposed phase grating can simultaneously eliminate the zero- and high-order diffraction along certain axes on the image plane, forming a pure sinusoidal transmission modulation that leaves only the first-order diffraction. The first-ever, to the best of our knowledge, theoretical model for achieving sinusoidal transmission modulation is suggested in this paper; then the theoretical calculation and experiment results are displayed to investigate the physical mechanism of the proposed grating. Moreover, the manipulation on the arrangement of grating design can disperse or concentrate the diffraction energy at a specific axis. Finally, almost first-order-only diffraction is achieved on a single axis by introducing random changes to certain geometrical parameters of the two-dimensional binary phase grating. Our work provides potential applications in optical science and engineering fields.

7.
Phys Chem Chem Phys ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38596870

RESUMO

We report the spin reorientation transition (SRT) and the low field controllable continuous spin switching (SSW) of the Tm0.75Yb0.25FeO3 (TYFO) single crystal in this study. The SRT, characterized by the transition from Γ2(Fx, Cy, Gz)-Γ4(Gx, Ay, Fz), occurs within the temperature range of 20-27 K. Under an external magnetic field of 50 Oe, the SSW occurs along the c-axis at approximately 98 K due to the reversal of Tm3+ magnetic moment induced by the magnetic coupling change between Tm3+ and Fe3+, transitioning from a parallel to an antiparallel alignment. Notably, a continuous SSW is observed along the a-axis at low temperatures, which has not been previously reported in rare earth orthoferrites. This unique behavior can be easily manipulated by low magnetic fields within the temperature range of 2-20 K. Both the spin reorientation transition and spin switching phenomena in the TYFO single crystal arise from interactions between rare earth ions and iron ions and can be effectively regulated by applied low magnetic fields, making it a promising material for low-field spin devices.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38597358

RESUMO

Thermoresponsive wound dressings with real-time monitoring and on-demand drug delivery have gained significant attention recently. However, such smart systems with stable temperature adjustment and drug release control are still lacking. Here, a novel smart fabric is designed for wound management with thermoresponsive drug delivery and simultaneously temperature monitoring. The triple layers of the fabrics are composed of the drug-loaded thermoresponsive nanofiber film, the MXene-optimized joule heating film, and the FPCB control chip. The precise and stable temperature stimulation can be easily achieved by applying a low voltage (0-4 V) to the heating film, achieving the temperature control ranging from 25 to 130 °C. And the temperature of the wound region can be monitored and adjusted in real time, demonstrating an accurate and low-voltage joule heating capability. Based on that, the drug-loaded film achieved precise thermoresponsive drug release and obtained significant antibacterial effects in vitro. The in vivo experiments also proved the hybrid fabric system with a notable antibacterial effect and accelerated wound healing process (about 30% faster than the conventional gauze group).

9.
Hum Reprod ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592717

RESUMO

STUDY QUESTION: Can the addition of late embryogenesis-abundant (LEA) proteins as a cryoprotective agent during the vitrification cryopreservation of in vitro matured oocytes enhance their developmental potential after fertilization? SUMMARY ANSWER: LEA proteins improve the developmental potential of human in vitro matured oocytes following cryopreservation, mostly by downregulating FOS genes, reducing oxidative stress, and inhibiting the formation of ice crystals. WHAT IS KNOWN ALREADY: Various factors in the vitrification process, including cryoprotectant toxicity, osmotic stress, and ice crystal formation during rewarming, can cause fatal damage to oocytes, thereby affecting the oocytes developmental potential and subsequent clinical outcomes. Recent studies have shown that LEA proteins possess high hydrophilicity and inherent stress tolerance, and can reduce low-temperature damage, although the molecular mechanism it exerts protective effects is still unclear. STUDY DESIGN, SIZE, DURATION: Two LEA proteins extracted and purified by us were added to solutions for vitrification-warming of oocytes at concentrations of 10, 100, and 200 µg/mL, to determine the optimal protective concentration for each protein. Individual oocyte samples were collected for transcriptomic analysis, with each group consisting of three sample replicates. PARTICIPANTS/MATERIALS, SETTING, METHODS: Immature oocytes were collected from patients who were undergoing combined in vitro fertilization (IVF) treatment and who had met the designated inclusion and exclusion criteria. These oocytes underwent in vitro maturation (IVM) culture for experimental research. A fluorescence microscope was used to detect the levels of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and calcium in the mitochondria of vitrified-warmed human oocytes treated with different concentrations of LEA proteins, and the protective effect of the protein on mitochondrial function was assessed. The levels of intracellular ice recrystallization inhibition (IRI) in human oocytes after vitrification-warming were characterized by the cryomicroscope, to determine the LEA proteins inhibitory effect on recrystallization. By analyzing transcriptome sequencing data to investigate the potential mechanism through which LEA proteins exert their cryoprotective effects. MAIN RESULTS AND THE ROLE OF CHANCE: The secondary structures of AfrLEA2 and AfrLEA3m proteins were shown to consist of a large number of α-helices and the proteins were shown to be highly hydrophilic, in agreement with previous reports. Confocal microscopy results showed that the immunofluorescence of AfrLEA2-FITC and AfrLEA3m-FITC-labeled proteins appeared to be extracellular and did not penetrate the cell membrane compared with the fluorescein isothiocyanate (FITC) control group, indicating that both AfrLEA2 and AfrLEA3m proteins were extracellular. The group treated with 100 µg/mL AfrLEA2 or AfrLEA3m protein had more uniform cytoplasmic particles and fewer vacuoles compared to the 10 and 200 µg/mL groups and were closest to the fresh group. In the 100 µg/mL groups, MMPs were significantly higher while ROS and calcium levels were significantly lower than those in the control group and were closer to the levels observed in fresh oocytes. Meanwhile, 100 µg/mL of AfrLEA2 or AfrLEA3m protein caused smaller ice crystal formation in the IRI assay compared to the control group treated with dimethylsulphoxide (DMSO) and ethylene glycol (EG); thus, the recrystallization inhibition was superior to that with the conventional cryoprotectants DMSO and EG. Further results revealed that the proteins improved the developmental potential of human oocytes following cryopreservation, likely by downregulating FOS genes and reducing oxidative stress. LIMITATIONS, REASONS FOR CAUTION: The in vitro-matured metaphase II (IVM-MII) oocytes used in the study, due to ethical constraints, may not accurately reflect the condition of MII oocytes in general. The AfrLEA2 and AfrLEA3m proteins are recombinant proteins and their synthetic stability needs to be further explored. WIDER IMPLICATIONS OF THE FINDINGS: LEA proteins, as a non-toxic and effective cryoprotectant, can reduce the cryoinjury of oocytes during cryopreservation. It provides a new promising method for cryopreservation of various cell types. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Development Program of China (2022YFC2703000) and the National Natural Science Foundation of China (52206064). The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.

11.
J Agric Food Chem ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642059

RESUMO

Intramuscular fat is a crucial determinant of carcass quality traits like tenderness and taste, which in turn is influenced by the proliferation of intramuscular preadipocytes. This study aimed to investigate the Krüppel-like factor 6 (KLF6)-mediated proliferation of bovine preadipocytes and identify underlying molecular mechanisms. Down-regulation of KLF6 by siKLF6 resulted in a significant (p < 0.01) suppression of cell cycle-related genes including CDK1, MCM6, ZNF4, PCNA, CDK2, CCNB1, and CDK6. Conversely, the expression level of p27 was significantly (p < 0.01) increased. Moreover, EdU (5-ethynyl-20-deoxyuridine) staining revealed a significant decrease in EdU-labeled cells due to KLF6 down-regulation. Collectively, these findings indicate that KLF6 down-regulation inhibits adipocyte proliferation. Furthermore, RNA sequencing of preadipocytes transfected with siKLF6 and NC, followed by differential gene expression analysis, identified 100 up-regulated and 70 down-regulated genes. Additionally, the differentially expressed genes also significantly influenced various Gene Ontology (GO) terms related to cell cycle, nuclear chromosomes, and catalytic activity on DNA. Furthermore, the top 20 pathways enriched in these DEGs included cell cycle, DNA replication, cellular senescence, and homologous recombination. These GO terms and KEGG pathways play key roles in bovine preadipocyte proliferation. In conclusion, the results of this study suggest that KLF6 positively regulates the proliferation of bovine preadipocytes.

12.
Cancer Lett ; : 216860, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583650

RESUMO

Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.

13.
Adv Sci (Weinh) ; : e2303471, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481061

RESUMO

The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL-carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically-defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38552194

RESUMO

The aims of our study were to examine whether initial or subsequent adiposity status had a greater effect on hypertension. We collected data in 1992 and again in 2007 from the same group of 597 individuals in the middle age. The subjects were classified into four groups: individuals with a normal body mass index (BMI) in 1992 and 2007 were in Group I; those with a normal BMI in 1992, but became overweight or obese in 2007 were in Group II; those who were overweight or obese in 1992, but had a normal BMI in 2007 were in Group III; and those who were overweight or obese in 1992 and 2007 were in Group IV. Their demographic data were recorded. The relationship between adiposity status and hypertension was analyzed using logistic regression model. The cumulative incidence of hypertension was 35.5%, 56.3%, 50.0%, and 65.1% for Group I to IV, respectively. Compared with Group I, after adjusted factors, the hazard ratio (HR) was 1.80 for Group II (P = .001), 1.40 for Group III (P = .150), and 2.31 for Group IV (P < .001). Adiposity status in 2007 could predict hypertension (OR = 2.5, P < .001), as opposed to the initial adiposity status (P = .148). Subsequently adiposity status could have major effects on hypertension. Our society is very short of public health resources, particularly in developing countries, we should pay more attention to current adiposity status and encourage middle-aged people to lose weight.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38551421

RESUMO

Objective: This study aims to investigate the risk factors associated with the development of venous thromboembolism (VTE) in patients diagnosed with gynecologic malignant tumors. Methods: A comprehensive meta-analysis was conducted by searching databases such as The Cochrane Library, PubMed, EMbase, Web of Science, CNKI, etc., covering the period from January 2010 to January 2020. Inclusion and exclusion criteria were applied to identify relevant literature. Two researchers independently conducted literature screening, data extraction, and quality assessment of the included studies. Meta-analysis was performed using RevMan 5.3 software. The analyzed indicators included age, tumor diameter, diabetes, coronary heart disease, tumor staging, body mass index, hypertension, hospitalization time, and surgery time. In this meta-analysis, the inclusion criteria for the studies were as follows: (1) Study type: Case-control studies; (2) Study population: Patients with gynecologic malignant tumors who developed venous thromboembolism; (3) Study focus: Risk factors for venous thromboembolism in patients with gynecologic malignant tumors; (4) Publication type: Journal articles. The exclusion criteria were: (1) Non-journal articles; (2) Non-case-control studies.; (3) Literature published in different forms multiple times; (4) Literature with incomplete information such as abstracts, keywords, conclusions, and study results. To conduct a comprehensive literature search, multiple databases were searched, including The Cochrane Library, PubMed, EMbase, Web of Science, CNKI, etc. The reason for selecting the time frame from January 2010 to January 2020 was to focus on recent research and include the most up-to-date studies available within the specified period. This time frame ensures that the analysis considers the relevant literature published in the past decade, providing a comprehensive understanding of the risk factors for venous thromboembolism in patients with gynecologic malignant tumors. Results: The meta-analysis incorporated eight studies, comprising a total of 6,436 cases (793 in the study group and 5,643 in the control group). The results revealed that, compared to the control group, the study group exhibited statistically significant older age [OR=1.41, 95% CI (1.00, 1.98), P = .05], higher tumor staging [OR=1.37, 95% CI (1.04, 1.81), P = .03], elevated body mass index [OR=1.42, 95% CI (1.12, 1.81), P = .004], increased prevalence of hypertension [OR=1.72, 95% CI (1.30, 2.28), P = .0002], and prolonged surgery time [OR=1.37, 95% CI (1.02, 1.85), P = .04]. However, there were no statistically significant differences in tumor diameter [OR=0.52, 95% CI (0.05, 5.32), P = .58], diabetes prevalence [OR=1.32, 95% CI (0.42, 4.11), P = .64], coronary heart disease incidence [OR=1.16, 95% CI (0.91, 1.47), P = .23], and hospitalization time [OR=1.90, 95% CI (0.98, 3.69), P = .06] between the study group and the control group.Regarding the statistical terms used in the results, odds ratio (OR) is a measure of the association between an exposure (in this case, risk factors) and an outcome (venous thromboembolism). It compares the odds of the outcome occurring in the study group (patients with gynecologic malignant tumors who developed VTE) to the odds of the outcome occurring in the control group (patients with gynecologic malignant tumors who did not develop VTE). An OR greater than 1 indicates a higher odds of the outcome in the study group compared to the control group, while an OR less than 1 indicates a lower odds.Confidence intervals (CIs) provide a range of values within which the true population parameter (in this case, the true OR) is likely to fall. The 95% confidence interval is commonly used, and it represents the range within which we can be 95% confident that the true OR lies. If the CI includes the value 1, it suggests that there is no statistically significant difference between the study and control groups, while if the CI does not include 1, it indicates a statistically significant difference. Conclusion: Age, tumor staging, body mass index, hypertension, and surgery time emerge as significant risk factors for VTE in gynecologic malignant tumor surgery patients. Monitoring these risk factors can effectively facilitate risk assessment and prevention of VTE. These findings have important clinical implications. Firstly, they emphasize the importance of considering these risk factors during the assessment of VTE risk in patients with gynecologic malignancies. Healthcare professionals can use this information to identify high-risk patients and implement appropriate preventive measures. For example, older patients, those with advanced tumor staging, elevated body mass index, or hypertension may require closer monitoring and prophylactic strategies to reduce the risk of VTE. Furthermore, these findings can contribute to the development of targeted prevention strategies. By recognizing the specific risk factors associated with VTE in gynecologic malignancies, healthcare providers can implement interventions tailored to the individual patient's risk profile. This may include optimizing perioperative management, providing prophylactic anticoagulation, promoting early mobilization, and employing compression stockings or intermittent pneumatic compression devices.

16.
Carbohydr Polym ; 334: 122019, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553218

RESUMO

Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.


Assuntos
Galactose/análogos & derivados , Gleditsia , Gleditsia/química , Mananas/química , Sementes/química , Frutas , Polissacarídeos
17.
Angew Chem Int Ed Engl ; : e202403187, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501218

RESUMO

Low capacity and poor cycle stability greatly inhibit the development of zinc-iodine batteries. Herein, a high-performance Zn-iodine battery has been reached by designing and optimizing both electrode and electrolyte. The Br- is introduced as the activator to trigger I+, and coupled with I+ forming interhalogen to stabilize I+ to achieve a four-electron reaction, which greatly promotes the capacity. And the Ni-Fe-I LDH nanoflowers serve as the confinement host to enable the reactions of I-/I+ occurring in the layer due to the spacious and stable interlayer spacing of Ni-Fe-I LDH, which effectively suppresses the iodine-species shuttle ensuring high cycling stability. As a result, the electrochemical performance is greatly enhanced, especially in specific capacity (as high as 350 mAh g-1 at 1 A g-1 far higher than two-electron transfer Zn-iodine batteries) and cycling performance (94.6 % capacity retention after 10000 cycles). This strategy provides a new way to realize high capacity and long-term stability of Zn-iodine batteries.

18.
Int J Biol Sci ; 20(5): 1744-1762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481809

RESUMO

Glycolysis exerts a key role in the metabolic reprogramming of cancer. Specific long non-coding RNAs (lncRNAs) have been identified to exhibit oncogenic glycolysis regulation. Nevertheless, the precise mechanisms by which glycolysis-related lncRNAs control hepatocellular carcinoma (HCC) are still unknown. We profiled and analyzed glycolysis-associated lncRNA signatures using HCC specimens from The Cancer Genome Atlas (TCGA) dataset. Considerable upregulation of the glycolysis-related lncRNA SLC2A1-DT was noted in HCC tissues; this upregulation was strongly linked with advanced tumor stage and poor prognosis. Cell culture and animal-related studies indicated that knockdown or overexpression of SLC2A1-DT obviously restrained or promoted glycolysis, propagation, and metastasis in HCC cells. Mechanistically, SLC2A1-DT enhanced the interaction of protein between ß-catenin and YWHAZ, suppressing the binding between ß-catenin and ß-TrCP, an E3 ubiquitin ligase. Thereby, SLC2A1-DT impeded the ß-TrCP-dependent ubiquitination and ß-catenin degradation. The upregulated ß-catenin activated the transcription of c-Myc, which then increased the transcription of glycolytic genes including SLC2A1, LDHA, and HK2. Additionally, we revealed that c-Myc transcriptionally induced the expression of methyltransferase 3 (METTL3), which increased N6-methyladenosine (m6A) modification and stability of SLC2A1-DT in a YTHDF1 dependent manner. Collectively, we show that the lncRNA SLC2A1-DT promotes glycolysis and HCC tumorigenesis by a m6A modification-mediated positive feedback mechanism with glycolytic regulator c-Myc and suggested as an innovative treatment option and indicator for HCC.


Assuntos
Adenina/análogos & derivados , Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Retroalimentação , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Glicólise/genética , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética
19.
Biomaterials ; 308: 122540, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537343

RESUMO

Helicobacter pylori (H. pylori) infection is a major cause of gastric diseases. Currently, bismuth-based quadruple therapy is widely adopted for eradicating H. pylori infection. However, this first-line strategy faces several challenges such as drug resistance, intestinal dysbacteriosis, and patients' poor compliance. To overcome these problems, an all-in-one therapeutic platform (CLA-Bi-ZnO2@Lipo) that composed of liposomes loading clarithromycin (CLA), Bi, and ZnO2 hybrid nanoparticles was developed for eradicating multidrug-resistant (MDR) H. pylori. The in vitro and in vivo results showed that CLA-Bi-ZnO2@Lipo could target the infection-induced inflammatory mucosa through liposome mediated nanoparticle-tissue surface charge interaction and quickly respond to the gastric acid environment to release CLA, Bi3+, Zn2+, and H2O2. By oral administration per day, the acid triggered decomposition of CLA-Bi-ZnO2@Lipo could significantly increase intragastric pH to 6 within 30 min; The released CLA, Zn2+, and H2O2 further exerted synergistical anti-bacterial effects in which a ∼2 order higher efficacy in reducing MDR H. pylori burden was achieved in comparison with standard quadruple therapy (p < 0.05); The released Zn2+ and Bi3+ could also alleviate mucosal inflammation. Most importantly, the CLA-Bi-ZnO2@Lipo exhibited superior biosafety and nearly no side effects on intestinal flora. Overall, this study developed a highly integrated and safe anti-MDR H. pylori agent which had great potential to be used as an alternative treatment for MDR H. pylori eradication.

20.
Vis Comput Ind Biomed Art ; 7(1): 7, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532082

RESUMO

This study proposes an image-based three-dimensional (3D) vector reconstruction of industrial parts that can generate non-uniform rational B-splines (NURBS) surfaces with high fidelity and flexibility. The contributions of this study include three parts: first, a dataset of two-dimensional images is constructed for typical industrial parts, including hexagonal head bolts, cylindrical gears, shoulder rings, hexagonal nuts, and cylindrical roller bearings; second, a deep learning algorithm is developed for parameter extraction of 3D industrial parts, which can determine the final 3D parameters and pose information of the reconstructed model using two new nets, CAD-ClassNet and CAD-ReconNet; and finally, a 3D vector shape reconstruction of mechanical parts is presented to generate NURBS from the obtained shape parameters. The final reconstructed models show that the proposed approach is highly accurate, efficient, and practical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...